Pengertian Limit Fungsi
Limit merupakan sebuah konsep matematika
dimana sesuatu dikatakan “hampir” atau “mendekati” nilai suatu bilangan
tertentu. Limit dapat berupa sebuah fungsi yang kodomainnya “hampir”
atau “mendekati” nilai suatu bilangan asli tertentu.
![limit fungsi ilustrasi](https://i0.wp.com/www.studiobelajar.com/wp-content/uploads/2019/01/limit-fungsi-ilustrasi.jpg?resize=300%2C129&ssl=1)
Ilustrasi limit. Sumber gambar: betterexplained.com
Limit Fungsi Aljabar
Dalam pengoperasian limit fungsi aljabar, terdapat beberapa hukum atau teorema limit yang perlu diperhatikan. Jika k konstanta, fungsi f dan fungsi g adalah fungsi-fungsi memiliki nilai limit yang mendekati bilangan c, maka:
No |
TEOREMA |
1 |
![\lim \limits_{x\to c}k=k \lim \limits_{x\to c}k=k](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7Dk%3Dk&bg=f9f9f9&fg=000000&s=0&c=20201002) |
2 |
![\lim \limits_{x\to c}x = c \lim \limits_{x\to c}x = c](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7Dx+%3D+c&bg=f9f9f9&fg=000000&s=0&c=20201002) |
3 |
![k \cdot \lim \limits_{x\to c}f(x) k \cdot \lim \limits_{x\to c}f(x)](https://s0.wp.com/latex.php?latex=k+%5Ccdot+%5Clim+%5Climits_%7Bx%5Cto+c%7Df%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
4 |
![= \lim_{x\to c}f(x) + \lim_{x\to c}g(x) = \lim_{x\to c}f(x) + \lim_{x\to c}g(x)](https://s0.wp.com/latex.php?latex=%3D+%5Clim_%7Bx%5Cto+c%7Df%28x%29+%2B+%5Clim_%7Bx%5Cto+c%7Dg%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
5 |
![= \lim_x{\to c}f(x) - \lim_{x \to c}g(x) = \lim_x{\to c}f(x) - \lim_{x \to c}g(x)](https://s0.wp.com/latex.php?latex=%3D+%5Clim_x%7B%5Cto+c%7Df%28x%29+-+%5Clim_%7Bx+%5Cto+c%7Dg%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
6 |
![\lim \limits_{x\to c}({f(x) \cdot g(x)}) = \lim_{x\to c}f(x) \cdot \lim_{x\to c}g(x) \lim \limits_{x\to c}({f(x) \cdot g(x)}) = \lim_{x\to c}f(x) \cdot \lim_{x\to c}g(x)](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7D%28%7Bf%28x%29+%5Ccdot+g%28x%29%7D%29+%3D+%5Clim_%7Bx%5Cto+c%7Df%28x%29+%5Ccdot+%5Clim_%7Bx%5Cto+c%7Dg%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
7 |
![\lim \limits_{x\to c}\frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)} \lim \limits_{x\to c}\frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7D%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D+%3D+%5Cfrac%7B%5Clim_%7Bx%5Cto+c%7Df%28x%29%7D%7B%5Clim_%7Bx%5Cto+c%7Dg%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002) |
8 |
![\lim \limits_{x\to c}(f(x)^n) = (\lim_{x\to c}f(x))^n \lim \limits_{x\to c}(f(x)^n) = (\lim_{x\to c}f(x))^n](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7D%28f%28x%29%5En%29+%3D+%28%5Clim_%7Bx%5Cto+c%7Df%28x%29%29%5En&bg=f9f9f9&fg=000000&s=0&c=20201002) |
9 |
![\lim \limits_{x\to c}(\sqrt[n]{f(x)}) = \sqrt[n]{\lim_{x\to c}f(x)} \lim \limits_{x\to c}(\sqrt[n]{f(x)}) = \sqrt[n]{\lim_{x\to c}f(x)}](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7D%28%5Csqrt%5Bn%5D%7Bf%28x%29%7D%29+%3D+%5Csqrt%5Bn%5D%7B%5Clim_%7Bx%5Cto+c%7Df%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002) |
Ada tiga metode dalam mengerjakan limit fungsi aljabar, yaitu:
1. Metode substitusi
Metode paling mudah dengan menentukan hasil suatu limit fungsi adalah
dengan mensubstitusi langsung nilai kedalam fungsi f(x). Syarat metode
ini adalah jika hasil substitusi tidak membentuk nilai “tak tentu”.
Contoh:
![\lim \limits_{x\to 3}\frac{x^2 - 4}{x + 2} = \frac{9 - 4}{3 + 2} = 1 \lim \limits_{x\to 3}\frac{x^2 - 4}{x + 2} = \frac{9 - 4}{3 + 2} = 1](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+3%7D%5Cfrac%7Bx%5E2+-+4%7D%7Bx+%2B+2%7D+%3D+%5Cfrac%7B9+-+4%7D%7B3+%2B+2%7D+%3D+1&bg=f9f9f9&fg=000000&s=0&c=20201002)
2. Metode pemfaktoran
Jika pada metode substitusi menghasilkan suatu nilai bentuk tak tentu seperti:
∞,
,
, 0 x∞, ∞ – ∞, 00, ∞0, atau ∞∞
maka fungsi tersebut harus difaktorkan terlebih dahulu sehingga
bentuknya tidak menjadi bentuk tak tentu, baru kemudian bisa
disubstitusikan
. Contoh:
![\lim \limits_{x\to 3}\frac{x^2 - 3x}{2x - 6} = \frac{x(x - 3)}{2(x - 3)} = \frac{3}{2} \lim \limits_{x\to 3}\frac{x^2 - 3x}{2x - 6} = \frac{x(x - 3)}{2(x - 3)} = \frac{3}{2}](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+3%7D%5Cfrac%7Bx%5E2+-+3x%7D%7B2x+-+6%7D+%3D+%5Cfrac%7Bx%28x+-+3%29%7D%7B2%28x+-+3%29%7D+%3D+%5Cfrac%7B3%7D%7B2%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
3. Metode perkalian dengan akar sekawan
Metode ini digunakan jika pada metode substitusi langsung
menghasilkan nilai limit yang irasional. Fungsi dikalikan dengan akar
sekawannya agar bentuk limit tersebut tidak irasional, sehingga bisa
dilakukan kembali substitusi langsung nilai
. Contoh:
![\lim \limits_{x\to -1}\frac{x +1}{1 - \sqrt{x + 2}} x (\frac{1 + \sqrt{x +2}}{1 + \sqrt{x + 2}}) = \frac{(x + 1)(1 + \sqrt{x+ 2})}{1 - (x + 2)} \lim \limits_{x\to -1}\frac{x +1}{1 - \sqrt{x + 2}} x (\frac{1 + \sqrt{x +2}}{1 + \sqrt{x + 2}}) = \frac{(x + 1)(1 + \sqrt{x+ 2})}{1 - (x + 2)}](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+-1%7D%5Cfrac%7Bx+%2B1%7D%7B1+-+%5Csqrt%7Bx+%2B+2%7D%7D+x+%28%5Cfrac%7B1+%2B+%5Csqrt%7Bx+%2B2%7D%7D%7B1+%2B+%5Csqrt%7Bx+%2B+2%7D%7D%29+%3D+%5Cfrac%7B%28x+%2B+1%29%281+%2B+%5Csqrt%7Bx%2B+2%7D%29%7D%7B1+-+%28x+%2B+2%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
![=\frac{(x + 1)(1+\sqrt{x+2})}{-x - 1} = \frac{(x+1)(1+\sqrt{x+2})}{-(x+1)} = -(1 + \sqrt{x + 2}) =\frac{(x + 1)(1+\sqrt{x+2})}{-x - 1} = \frac{(x+1)(1+\sqrt{x+2})}{-(x+1)} = -(1 + \sqrt{x + 2})](https://s0.wp.com/latex.php?latex=%3D%5Cfrac%7B%28x+%2B+1%29%281%2B%5Csqrt%7Bx%2B2%7D%29%7D%7B-x+-+1%7D+%3D+%5Cfrac%7B%28x%2B1%29%281%2B%5Csqrt%7Bx%2B2%7D%29%7D%7B-%28x%2B1%29%7D+%3D+-%281+%2B+%5Csqrt%7Bx+%2B+2%7D%29&bg=f9f9f9&fg=000000&s=0&c=20201002)
![=-(1 + \sqrt{-(1) + 2}) = -(1 + 1) = -2 =-(1 + \sqrt{-(1) + 2}) = -(1 + 1) = -2](https://s0.wp.com/latex.php?latex=%3D-%281+%2B+%5Csqrt%7B-%281%29+%2B+2%7D%29+%3D+-%281+%2B+1%29+%3D+-2&bg=f9f9f9&fg=000000&s=0&c=20201002)
Dalam pengoprasian limit fungsi aljabar, terkadang nilai x mendekati tak berhingga
(∞), sehingga jika disubstitusikan fungsi menghasilkan nilai tak tentu.
Dalam pengoperasian limitnya, terdapat beberapa hukum atau teorema
limit yang perlu diperhatikan. Jika n adalah bilangan
bulat, k konstanta, fungsi f dan fungsi g adalah fungsi-fungsi memiliki
nilai limit yang mendekati bilangan c, maka:
No |
TEOREMA |
SYARAT |
1 |
![\lim \limits_{x\to \infty}k = k \lim \limits_{x\to \infty}k = k](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dk+%3D+k&bg=f9f9f9&fg=000000&s=0&c=20201002) |
k adalah konstanta |
2 |
![\lim \limits_{x\to \infty}x^n = \infty \lim \limits_{x\to \infty}x^n = \infty](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dx%5En+%3D+%5Cinfty&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
![\lim \limits_{x\to \infty}\frac{1}{x^n} = 0 \lim \limits_{x\to \infty}\frac{1}{x^n} = 0](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%5Cfrac%7B1%7D%7Bx%5En%7D+%3D+0&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
3 |
![\lim \limits_{x\to -\infty}\frac{1}{x^n} = \infty \lim \limits_{x\to -\infty}\frac{1}{x^n} = \infty](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+-%5Cinfty%7D%5Cfrac%7B1%7D%7Bx%5En%7D+%3D+%5Cinfty&bg=f9f9f9&fg=000000&s=0&c=20201002) |
Jika n = genap |
![\lim \limits_{x\to - \infty}\frac{1}{x^n}= - \infty \lim \limits_{x\to - \infty}\frac{1}{x^n}= - \infty](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+-+%5Cinfty%7D%5Cfrac%7B1%7D%7Bx%5En%7D%3D+-+%5Cinfty&bg=f9f9f9&fg=000000&s=0&c=20201002) |
Jika n = ganjil |
4 |
![\lim \limits_{x\to \infty}k \cdot f(x) = k \cdot \lim \limits_{x\to \infty}f(x) \lim \limits_{x\to \infty}k \cdot f(x) = k \cdot \lim \limits_{x\to \infty}f(x)](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dk+%5Ccdot+f%28x%29+%3D+k+%5Ccdot+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
k adalah konstanta |
5 |
![\lim \limits_{x\to \infty}{f(x) + g(x)} = \lim \limits_{x\to \infty} f(x) + \lim \limits_{x\to \infty}g(x) \lim \limits_{x\to \infty}{f(x) + g(x)} = \lim \limits_{x\to \infty} f(x) + \lim \limits_{x\to \infty}g(x)](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%7Bf%28x%29+%2B+g%28x%29%7D+%3D+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D+f%28x%29+%2B+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dg%28x%29+&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
6 |
![= \lim \limits_{x\to \infty}f(x) - \lim \limits_{x\to \infty}g(x) = \lim \limits_{x\to \infty}f(x) - \lim \limits_{x\to \infty}g(x)](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29+-+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dg%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
7 |
![\lim \limits_{x\to \infty}({f(x) \cdot g(x)}) = \lim \limits_{x\to \infty}f(x) \cdot \lim \limits_{x\to \infty} g(x) \lim \limits_{x\to \infty}({f(x) \cdot g(x)}) = \lim \limits_{x\to \infty}f(x) \cdot \lim \limits_{x\to \infty} g(x)](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%28%7Bf%28x%29+%5Ccdot+g%28x%29%7D%29+%3D+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29+%5Ccdot+%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D+g%28x%29&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
8 |
![\lim \limits_{x\to \infty}\frac{f(x)}{g(x)} = \frac{\lim \limits_{x\to \infty}f(x)}{\lim \limits_{x\to \infty}g(x)} \lim \limits_{x\to \infty}\frac{f(x)}{g(x)} = \frac{\lim \limits_{x\to \infty}f(x)}{\lim \limits_{x\to \infty}g(x)}](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D+%3D+%5Cfrac%7B%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29%7D%7B%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dg%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
9 |
![\lim \limits_{x\to c}(f(x)^n) = (\lim \limits_{x\to c} f(x))^n \lim \limits_{x\to c}(f(x)^n) = (\lim \limits_{x\to c} f(x))^n](https://s0.wp.com/latex.php?latex=+%5Clim+%5Climits_%7Bx%5Cto+c%7D%28f%28x%29%5En%29+%3D+%28%5Clim+%5Climits_%7Bx%5Cto+c%7D+f%28x%29%29%5En&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
10 |
![\lim \limits_{x\to c}(\sqrt[n]{f(x)}) = \sqrt[n]{\lim \limits_{x\to c}f(x)} \lim \limits_{x\to c}(\sqrt[n]{f(x)}) = \sqrt[n]{\lim \limits_{x\to c}f(x)}](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+c%7D%28%5Csqrt%5Bn%5D%7Bf%28x%29%7D%29+%3D+%5Csqrt%5Bn%5D%7B%5Clim+%5Climits_%7Bx%5Cto+c%7Df%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002) |
|
11 |
![\lim \limits_{x\to \infty}\frac{1}{f(x)} = \infty \lim \limits_{x\to \infty}\frac{1}{f(x)} = \infty](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%5Cfrac%7B1%7D%7Bf%28x%29%7D+%3D+%5Cinfty&bg=f9f9f9&fg=000000&s=0&c=20201002) |
![\lim \limits_{x\to \infty}f(x) = 0 \lim \limits_{x\to \infty}f(x) = 0](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29+%3D+0&bg=f9f9f9&fg=000000&s=0&c=20201002) |
![\lim \limits_{x\to \infty}\frac{1}{f(x)} = 0 \lim \limits_{x\to \infty}\frac{1}{f(x)} = 0](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%5Cfrac%7B1%7D%7Bf%28x%29%7D+%3D+0&bg=f9f9f9&fg=000000&s=0&c=20201002) |
![\lim \limits_{x\to \infty}f(x) = \infty \lim \limits_{x\to \infty}f(x) = \infty](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29+%3D+%5Cinfty&bg=f9f9f9&fg=000000&s=0&c=20201002) |
Ada dua metode dalam mengerjakan limit fungsi aljabar bentuk tak berhingga:
- Membagi dengan pangkat tertinggi
Metode ini digunakan pada limit fungsi bentuk
. Metode ini dapat dikerjakan dengan membagi pembilang f(x) dan penyebut g(x) dengan variabel xn berpangkat tertinggi yang ada dalam fungsi f(x) dan g(x). Setelahnya, baru dapat disubstitusi dengan
. Contoh:
![\lim \limits_{x\to \infty}\frac{4x-1}{x^2+2} = \frac{\frac{4x}{x^2} - \frac{1}{x^2}}{\frac{x^2}{x^2} + \frac{2}{x^2}} = \frac{\frac{4}{x} - \frac{1}{x^2}}{1+\frac{2}{x^2}} = \frac{0}{1} = 0 \lim \limits_{x\to \infty}\frac{4x-1}{x^2+2} = \frac{\frac{4x}{x^2} - \frac{1}{x^2}}{\frac{x^2}{x^2} + \frac{2}{x^2}} = \frac{\frac{4}{x} - \frac{1}{x^2}}{1+\frac{2}{x^2}} = \frac{0}{1} = 0](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%5Cfrac%7B4x-1%7D%7Bx%5E2%2B2%7D+%3D+%5Cfrac%7B%5Cfrac%7B4x%7D%7Bx%5E2%7D+-+%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%7B%5Cfrac%7Bx%5E2%7D%7Bx%5E2%7D+%2B+%5Cfrac%7B2%7D%7Bx%5E2%7D%7D+%3D+%5Cfrac%7B%5Cfrac%7B4%7D%7Bx%7D+-+%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%7B1%2B%5Cfrac%7B2%7D%7Bx%5E2%7D%7D+%3D+%5Cfrac%7B0%7D%7B1%7D+%3D+0&bg=f9f9f9&fg=000000&s=0&c=20201002)
- Mengalikan bentuk sekawan
Metode ini digunakan pada limit fungsi bentuk
. Metode ini dapat diselesaikan dengan perkalian bentuk sekawan:
![\frac{\lim \limits_{x\to \infty}f(x)+\lim \limits_{x\to \infty}g(x)}{\lim \limits_{x\to \infty}f(x)+\lim \limits_{x \to \infty}g(x)} \frac{\lim \limits_{x\to \infty}f(x)+\lim \limits_{x\to \infty}g(x)}{\lim \limits_{x\to \infty}f(x)+\lim \limits_{x \to \infty}g(x)}](https://s0.wp.com/latex.php?latex=%5Cfrac%7B%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29%2B%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Dg%28x%29%7D%7B%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7Df%28x%29%2B%5Clim+%5Climits_%7Bx+%5Cto+%5Cinfty%7Dg%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
kemudian dilanjutkan pembagian dengan metode pertama yaitu membagi dengan pangkat tertinggi. Contoh:
![\lim \limits_{x\to \infty}(\sqrt{x^2 + 4x - 5 - \sqrt{x^2 -x -2}}) \lim \limits_{x\to \infty}(\sqrt{x^2 + 4x - 5 - \sqrt{x^2 -x -2}})](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cinfty%7D%28%5Csqrt%7Bx%5E2+%2B+4x+-+5+-+%5Csqrt%7Bx%5E2+-x+-2%7D%7D%29&bg=f9f9f9&fg=000000&s=0&c=20201002)
![x \frac{(\sqrt{x^2+4x-5 + \sqrt{x^2 - x - 2}})}{(\sqrt{x^2+4x-5} + \sqrt{x^2-x-2})} x \frac{(\sqrt{x^2+4x-5 + \sqrt{x^2 - x - 2}})}{(\sqrt{x^2+4x-5} + \sqrt{x^2-x-2})}](https://s0.wp.com/latex.php?latex=x+%5Cfrac%7B%28%5Csqrt%7Bx%5E2%2B4x-5+%2B+%5Csqrt%7Bx%5E2+-+x+-+2%7D%7D%29%7D%7B%28%5Csqrt%7Bx%5E2%2B4x-5%7D+%2B+%5Csqrt%7Bx%5E2-x-2%7D%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
![= \lim \limits_{n\to \infty}frac{5x-3}{(\sqrt{x^2+4x-5})+\sqrt{x^2-x-2}} = \lim \limits_{n\to \infty}frac{5x-3}{(\sqrt{x^2+4x-5})+\sqrt{x^2-x-2}}](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bn%5Cto+%5Cinfty%7Dfrac%7B5x-3%7D%7B%28%5Csqrt%7Bx%5E2%2B4x-5%7D%29%2B%5Csqrt%7Bx%5E2-x-2%7D%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
Kemudian pembilang dan penyebut dibagi x pangkat tertinggi yaitu x1:
![= \lim \limits_{n\to \infty}\frac{5-\frac{3}{x}}{(\sqrt{1+\frac{4}{x}-\frac{5}{x^2}}+ \sqrt{1-\frac{1}{x}-\frac{2}{x^2}})} = \lim \limits_{n\to \infty}\frac{5-\frac{3}{x}}{(\sqrt{1+\frac{4}{x}-\frac{5}{x^2}}+ \sqrt{1-\frac{1}{x}-\frac{2}{x^2}})}](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bn%5Cto+%5Cinfty%7D%5Cfrac%7B5-%5Cfrac%7B3%7D%7Bx%7D%7D%7B%28%5Csqrt%7B1%2B%5Cfrac%7B4%7D%7Bx%7D-%5Cfrac%7B5%7D%7Bx%5E2%7D%7D%2B+%5Csqrt%7B1-%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B2%7D%7Bx%5E2%7D%7D%29%7D+&bg=f9f9f9&fg=000000&s=0&c=20201002)
![= \frac{(-0}{(1+1)} = \frac{5}{2} = \frac{(-0}{(1+1)} = \frac{5}{2}](https://s0.wp.com/latex.php?latex=%3D+%5Cfrac%7B%28-0%7D%7B%281%2B1%29%7D+%3D+%5Cfrac%7B5%7D%7B2%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
Limit Fungsi Trigonometri
Limit juga dapat digunakan pada fungsi trigonometri.
Penyelesaiannya sama dengan fungsi limit aljabar. Namun, agar mengerti
penjalasan selanjutnya harus mengerti terlebih dahulu konsep dari
trigonometri. Penyelesaian dalam limit fungsi ini dalam trigonometri
bisa dilakukan dengan melakukan perubahan-perubahan bentuk sinus,
cosinus, dan tangen.
Ada tiga bentuk umum dalam limit fungsi trigonometri, yaitu bentuk :
1. Bentuk ![\lim_{x\to c}f(x) = f(c) \lim_{x\to c}f(x) = f(c)](https://s0.wp.com/latex.php?latex=%5Clim_%7Bx%5Cto+c%7Df%28x%29+%3D+f%28c%29&bg=f9f9f9&fg=000000&s=0&c=20201002)
Pada bentuk ini, limit dari fungsi trigonometri f(x) merupakan hasil
dari substitusi nilai c ke dalam x dari trigonometri. Contoh :
No. |
CONTOH |
NILAI LIMIT |
1 |
![\lim \limits_{x\to ^\pi/_4} \sin 2x \lim \limits_{x\to ^\pi/_4} \sin 2x](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5E%5Cpi%2F_4%7D+%5Csin+2x&bg=f9f9f9&fg=000000&s=0&c=20201002) |
![\sin \frac{\pi}{2} \sin \frac{\pi}{2}](https://s0.wp.com/latex.php?latex=%5Csin+%5Cfrac%7B%5Cpi%7D%7B2%7D&bg=f9f9f9&fg=000000&s=0&c=20201002) |
2 |
![\lim \limits_{x\to \pi} \cos \frac{1}{2}x \lim \limits_{x\to \pi} \cos \frac{1}{2}x](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5Cpi%7D+%5Ccos+%5Cfrac%7B1%7D%7B2%7Dx&bg=f9f9f9&fg=000000&s=0&c=20201002) |
![cos\frac{1}{2}\pi cos\frac{1}{2}\pi](https://s0.wp.com/latex.php?latex=cos%5Cfrac%7B1%7D%7B2%7D%5Cpi&bg=f9f9f9&fg=000000&s=0&c=20201002) |
3 |
![\lim \limits_{x\to ^\pi/_2} \tan x \lim \limits_{x\to ^\pi/_2} \tan x](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5E%5Cpi%2F_2%7D+%5Ctan+x&bg=f9f9f9&fg=000000&s=0&c=20201002) |
![\tan\frac{\pi}{2} \tan\frac{\pi}{2}](https://s0.wp.com/latex.php?latex=%5Ctan%5Cfrac%7B%5Cpi%7D%7B2%7D&bg=f9f9f9&fg=000000&s=0&c=20201002) |
Jika c = 0, maka rumus limit-limit trigonometrinya adalah sebagai berikut :
2. Bentuk ![\lim_{x\to c}\frac{f(x)}{g(x)} \lim_{x\to c}\frac{f(x)}{g(x)}](https://s0.wp.com/latex.php?latex=%5Clim_%7Bx%5Cto+c%7D%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
Pada bentuk ini, limit diperoleh dari perbandingan 2 trigonometri
berbeda. Kedua trigonometri tersebut jika langsung disubstitusi dengan
nilai c menghasilkan f(c) = 0 dan g(c) = 0. Sehingga, nilai limit
trigonometri tersebut menjadi bilangan tak tentu
. Penyelesaiannya sama dengan limit fungsi aljabar yaitu pemfaktoran. Contoh bentuk ini yaitu:
![\lim \limits_{x\to ^\pi/_2}\frac{\sin 2x}{cosx} = \frac{2 \cos x \sin x}{cosx} = 2 \sin x = 2 \sin \frac{\pi}{2} = 2 \lim \limits_{x\to ^\pi/_2}\frac{\sin 2x}{cosx} = \frac{2 \cos x \sin x}{cosx} = 2 \sin x = 2 \sin \frac{\pi}{2} = 2](https://s0.wp.com/latex.php?latex=%5Clim+%5Climits_%7Bx%5Cto+%5E%5Cpi%2F_2%7D%5Cfrac%7B%5Csin+2x%7D%7Bcosx%7D+%3D+%5Cfrac%7B2+%5Ccos+x+%5Csin+x%7D%7Bcosx%7D+%3D+2+%5Csin+x+%3D+2+%5Csin+%5Cfrac%7B%5Cpi%7D%7B2%7D+%3D+2&bg=f9f9f9&fg=000000&s=0&c=20201002)
3. Bentuk ![\lim_{x\to 0}\frac{f(x)}{g(x)} \lim_{x\to 0}\frac{f(x)}{g(x)}](https://s0.wp.com/latex.php?latex=%5Clim_%7Bx%5Cto+0%7D%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
Pada bentuk ini, limit diperoleh dari perbandingan antara
trigonometri dan fungsi aljabar. Jika disubstitusikan langsung akan
menghaslikan bilangan tak tentu. Pada bentuk ini dikerjakan dengan
konsep turunan. Bentuk rumus dasar limit ini adalah:
Berdasarkan rumus dasar diataas, jika dikembangkan menjadi rumus-rumus berikut:
Contoh Soal Limit Fungsi dan Pembahasan
Contoh Soal Limit 1
Tentukanlah nilai dari
(UAN 2002)
Pembahasan 1 :
![= \lim \limits_{x\to 2}\frac{(6-x) - (x+2)}{(x-2)(x+2)} = \lim \limits_{x\to 2}\frac{(6-x) - (x+2)}{(x-2)(x+2)}](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bx%5Cto+2%7D%5Cfrac%7B%286-x%29+-+%28x%2B2%29%7D%7B%28x-2%29%28x%2B2%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
![= \lim \limits_{x\to 2}\frac{-2}{(x+2)} = \lim \limits_{x\to 2}\frac{-2}{(x+2)}](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bx%5Cto+2%7D%5Cfrac%7B-2%7D%7B%28x%2B2%29%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
![=-\frac{2}{4} = -\frac{1}{2} =-\frac{2}{4} = -\frac{1}{2}](https://s0.wp.com/latex.php?latex=%3D-%5Cfrac%7B2%7D%7B4%7D+%3D+-%5Cfrac%7B1%7D%7B2%7D&bg=f9f9f9&fg=000000&s=0&c=20201002)
Contoh Soal Limit 2
Tentukanlah nilai dari
(UN 2009)
Pembahasan 2:
![= \lim_{x\to \infty}(\frac{\sqrt{\frac{4}{x^2}+1}-\sqrt{\frac{2}{x^2}+1}}{3}) = \lim_{x\to \infty}(\frac{\sqrt{\frac{4}{x^2}+1}-\sqrt{\frac{2}{x^2}+1}}{3})](https://s0.wp.com/latex.php?latex=%3D+%5Clim_%7Bx%5Cto+%5Cinfty%7D%28%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B4%7D%7Bx%5E2%7D%2B1%7D-%5Csqrt%7B%5Cfrac%7B2%7D%7Bx%5E2%7D%2B1%7D%7D%7B3%7D%29&bg=f9f9f9&fg=000000&s=0&c=20201002)
![=(\frac{1-1}{3}) = \frac{0}{3} = 0 =(\frac{1-1}{3}) = \frac{0}{3} = 0](https://s0.wp.com/latex.php?latex=%3D%28%5Cfrac%7B1-1%7D%7B3%7D%29+%3D+%5Cfrac%7B0%7D%7B3%7D+%3D+0&bg=f9f9f9&fg=000000&s=0&c=20201002)
Contoh Soal Limit 3
Tentukanlah nilai dari
(SPMB 2002)
Pembahasan 3 :
![= \lim \limits_{x\to 0}(\frac{x^2}{2 \sin^2x}+\frac{\sin x \tan x}{2sin^2x}) = \lim \limits_{x\to 0}(\frac{x^2}{2 \sin^2x}+\frac{\sin x \tan x}{2sin^2x})](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bx%5Cto+0%7D%28%5Cfrac%7Bx%5E2%7D%7B2+%5Csin%5E2x%7D%2B%5Cfrac%7B%5Csin+x+%5Ctan+x%7D%7B2sin%5E2x%7D%29&bg=f9f9f9&fg=000000&s=0&c=20201002)
![= \lim \limits_{x\to 0}(\frac{x^2}{2 \sin^2x}+\frac{\tan x}{2 \sin x}) = \lim \limits_{x\to 0}(\frac{x^2}{2 \sin^2x}+\frac{\tan x}{2 \sin x})](https://s0.wp.com/latex.php?latex=%3D+%5Clim+%5Climits_%7Bx%5Cto+0%7D%28%5Cfrac%7Bx%5E2%7D%7B2+%5Csin%5E2x%7D%2B%5Cfrac%7B%5Ctan+x%7D%7B2+%5Csin+x%7D%29&bg=f9f9f9&fg=000000&s=0&c=20201002)
![=(\frac{1}{2(1^2)}+\frac{1}{2(1)}) = \frac{1}{2}+\frac{1}{2} = 1 =(\frac{1}{2(1^2)}+\frac{1}{2(1)}) = \frac{1}{2}+\frac{1}{2} = 1](https://s0.wp.com/latex.php?latex=%3D%28%5Cfrac%7B1%7D%7B2%281%5E2%29%7D%2B%5Cfrac%7B1%7D%7B2%281%29%7D%29+%3D+%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B2%7D+%3D+1&bg=f9f9f9&fg=000000&s=0&c=20201002)
Kontributor: Alwin Mulyanto, S.T.
Alumni Teknik Sipil FT UI
Sumber :
https://www.studiobelajar.com/limit-fungsi/