Senin, 16 November 2020

PERTUMBUHAN, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOALNYA

 PAISAL VIERI EKA TAMA SIMBOLON (28) XI IPS 2

Shalom
Om Swastiastu 
Namo Buddhaya 
Rahayu 
Salam Kebajikan 
Salam Sejahtera Untuk Seluruh Alam

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ
ﺇِﻥَّ ﺍﻟْﺤَﻤْﺪَ ﻟِﻠَّﻪِ ﻧَﺤْﻤَﺪُﻩُ ﻭَﻧَﺴْﺘَﻌِﻴْﻨُﻪُ ﻭَﻧَﺴْﺘَﻐْﻔِﺮُﻩْ ﻭَﻧَﻌُﻮﺫُ ﺑِﺎﻟﻠﻪِ ﻣِﻦْ ﺷُﺮُﻭْﺭِ ﺃَﻧْﻔُﺴِﻨَﺎ ﻭَﻣِﻦْ ﺳَﻴِّﺌَﺎﺕِ ﺃَﻋْﻤَﺎﻟِﻨَﺎ، ﻣَﻦْ ﻳَﻬْﺪِﻩِ ﺍﻟﻠﻪُ ﻓَﻼَ ﻣُﻀِﻞَّ ﻟَﻪُ ﻭَﻣَﻦْ ﻳُﻀْﻠِﻞْ ﻓَﻼَ ﻫَﺎﺩِﻱَ ﻟَﻪُ. ﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻻَ ﺇِﻟَﻪَ ﺇِﻻَّ ﺍﻟﻠﻪ ﻭَﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻣُﺤَﻤَّﺪًﺍ ﻋَﺒْﺪُﻩُ ﻭَﺭَﺳُﻮْﻟُﻪُ.

Saya akan memperkenalkan diri. Saya Paisal Vieri Eka Tama Simbolon (28) murid kelas XI IPS 2 di Sekolah Menengah Atas Negeri 63 Jakarta.
 

LANGSUNG YAKK...................

Bunga

Bunga (suku bunga) atau bank interest adalah pertambahan jumlah modal yang diberikan oleh bank untuk para nasabahnya dengan dihitung dari presentase modal uang nasabah dan lamanya menabung. Bunga juga bisa diberikan oleh pemberi pinjaman kepada pinjaman. Bunga ada dua jenis yaitu bunga tunggal dan bunga majemuk. Berikut ini perbedaannya :

Bunga Tunggal

Bunga tunggal adalah bunga yang diberikan berdasarkan perhitungan modal awal, sehingga bunga hanya memiliki satu variasi saja (tetap) dari awal periode sampai akhir periode. Contohnya saat menabung di bank, kita akan mendapatkan bunga yang tetap tiap-tiap periode.

Modal adalah jumlah dari yang dibungakan, modal awal merupakan modal yang dikeluarkan pada awal waktu usaha dan sebelum dibungakan. Modal akhir adalah hasil dari modal yang dibungakan.Sedangkan suku bunga dinyatakan dalam persentase tiap satuan waktu.

Jika modal awal sebesar M_0 mendapat bunga tunggal sebesar b (dalam persentase) per bulan, maka setelah n bulan besar modalnya M_n menjadi:

M_n = M_0(1+n \cdot b)

Contoh soal bunga tunggal:

Diketahui modal pinjaman Rp1.000.000 dengan bunga sebesar 2 \% per bulan, maka setelah 5 bulan modalnya adalah ….

M_n = 1.000.000 (1 + 5 \times \frac{2}{100}) = Rp1.100.000

Jika modal awal sebesar M_0, dan diketahui jumlah bunga tunggalnya B, maka besar persentase bunga tunggalnya b adalah

b = \frac{B}{M_0} \times 100 \%

Contoh lain: Diketahui bunga tunggal sebesar Rp50.000 untuk modal pinjaman Rp1.000.000, maka presentasenya adalah

b = \frac{50000}{1000000}\times 100 \% = 5 \%

Bunga Majemuk

Bunga majemuk adalah bunga yang diberikan berdasarkan modal awal dan akumulasi bunga pada periode sebelumnya.Bunga majemuk memiliki banyak variasi dan selalu berubah (tidak tetap) pada tiap-tiap periode. Contohnya saat menjual sebuah kendaraan, harga kendaraan yang dijualakan berubah setiap periode dan perubahannya bervariasi.

bunga majemuk ilustrasi

Sumber: thecalculatorsite.com

Jika modal awal sebesar M_0 mendapat bunga majemuk sebesar b (dalam persentase) perbulan, maka setelah n bulan besar modalnya M_n menjadi:

M_n = M_0(1+b)^n

Contoh, diketahui modal pinjaman Rp1.000.000 dengan bunga majemuk sebesar 2 \% per bulan, maka setelah 5 bulan modalnya adalah

M_n = 1.000.000(1+0.02)^5 = 1.104.080,80

Jika modal awal sebesar M_0 disimpan di bank mendapatkan bunga sebesar b pertahun dan perhitungan bunga dihitung sebanyak m kali dalam setahun, maka besar modal pada akhir tahun ke-n adalah :

M_n = M_0(1+\frac{b}{m})^{mn}

Contoh, M_0 = 1.000.000, m = 12\ kali, n = 2\ tahun, dan b = 6 \%, maka

M_n = 1.000.000(1+\frac{0.06}{12})^{12 \times 2} = 1.127.159,78

Penyusutan

Penyusutan atau depresiasi adalah pengurangan nilai dari harta tetap terhadap nilai buku atau nilai beli awalnya. Penyusutan dilakukan secara berkala dalam rangka pembebanan biaya pada pendapatan, baik atas penggunaan harta tersebut maupun karena sudah tidak memadai lagi.

Ada dua istilah dalam penyusutan yaitu, nilai buku dan nilai beli. Nilai beli merupakan harga awal ketika melakukan pembelian barang. Sedangkan nilai buku adalah nilai setelah terjadi penyusutan dimana nilainya tiap periode akan semakin kecil.

Jika harga sebuah barang pada saat dibeli adalah M_0 dan mengalami penyusutan tiap tahunnya sebesar p (dalam persen) dari harga belinya, maka nilai barang pada akhir tahun ke-n adalah :

M_n = M_0(1 - np)

Contoh, harga mobil Rp100.000.000 menyusut harganya 10% tiap tahun. Di akhir tahun ke-5 nilainya

M_n = 100.000.000(1 - 5 \times 0.1) = 50.000.000

Besar nilai (harga) penyusutan tiap tahun adalah :

P = M_0.p

P = 100.000.000 \times 0.1 = 10.000.000

Jika suatu barang mengalami penyusutan tiap tahunnya sebesar p (dalam persen) dari nilai bukunya sendiri, maka pada akhir tahun ke-n, nilai barangnya adalah :

M_n = M_0(1 - p)^n

Besar nilai (harga) penyusutan pada tahun ke-n adalah

P_n = M_{n-1}(p)(1 - p)^{(n-1)}

Contoh, harga mobil Rp100.000.000 menyusut nilai bukunya 10% tiap tahun. Di akhir tahun ke-5 nilainya

M_5 = 100.000.000 (1 - 0.1)^5 = 59.049.000

P_n = 65.610.000 (0.1) (1 - 0.1)^{(5-1)} = 4.304.672

Pertumbuhan

Pertumbuhan merupakan kenaikan jumlah pada tiap periode waktu berdasarkan suatu rasio pertumbuhan. Jika jumlah awal adalah J_0 dan rasio adalah r per tahun, maka pada akhir tahun ke-n, jumlah akhirnya menjadi J_n:

J_n = J_0(1+r)^n

Contoh, jumlah penduduk 10.000 jiwa dengan pertumbuhan penduduk 5% per tahun, maka pada akhir tahun ke-4, jumlahnya

J_n = 10.000 (1+0.05)^4 = 12.155\ jiwa

Anuitas

Anuitas adalah rangkaian pembayaran atau penerimaan yang sama jumlahnya dan harus dibayarkan atau yang harus diterima pada tiap akhir periode atas sebuah pinjaman atau kredit. Jika suatu pinjaman akan dikembalikan secara anuitas, maka ada tiga komponen yang menjadi dasar perhitungan yaitu:

  • Besar pinjaman
  • Besar bunga
  • Jangka waktu dan jumlah periode pembayaran
ilustrasi anuitas

Sumber: moneysense.ca

Anuitas yang diberikan secara tetap pada setiap akhir periode mempunyai dua fungsi yaitu membayar bunga atas hutang dan mengangsur hutang itu sendiri. Sehingga konsepnya :

Anuitas = Bunga\ atas\ hutang\ + Angsuran\ hutang

Jika utang sebesar M_o mendapat bunga sebesar b per bulan dan anuitas sebesar A, maka dapat ditentukan :

  • Besar bunga pada akhir periode ke-n

B_n = (1+b)^{n-1}(b \cdot M - A) + A

  • Besar angsuran pada akhir periode ke-n

A_n = (1+b)^{n-1}(A - bM)

  • Sisa hutang pada akhir periode ke-n

M_n = (1+b)^n (M - \frac{A}{b}) + \frac{A}{b}

Besar anuitas untuk membayar hutang sebesar M_0 dengan bunga sebesar b perbulan selama n bulan adalah :

A = \frac{b (M_0)(1 + b)^n}{(1 + b)^n - 1}

Contoh Soal 1 : 

Contoh Soal Anuitas

Sebuah pinjaman sebesar Rp20.000.000,00 akan dilunasi secara anuitas tahunan sebesar Rp4.000.000,00. Jika suku bunga 5% per tahun, besar angsuran, bunga, dan sisa hutang tahun ketiga adalah?

Pembahasan

  • Angsuran

A_n = (1+b)^{n-1}(A - bM)

A_n = (1+0,05)^{3-1}(4.000.000 - (0,05)20.000.000)

A_n = (1,05)^2(4.000.000 - 1.000.000)

A_n = (1,1025)(3.000.000)

A_n = 3.307.500,00

  • Bunga

B_n = (1+b)^{n-1}(b.M - A) + A

B_n = (1+0.05)^{3-1}(0.05 \times 20.000.000 - 4.000.000) + 4.000.000

B_n = (1,05)^2(-3.000.000) + 4.000.000 = -3.307.500 + 4.000.000

B_n = 692.500,00

  • Sisa hutang

M_n = (1+b)^n(M - \frac{A}{b}) + \frac{A}{b}

M_n = (1 + 0.05)^3(20.000.000 - \frac{4.000.000}{0.05})+ \frac{4.000.000}{0.05}

M_n = (1.157625)(-60.000.000) + 80.000.000

M_n = 10.542.500,00

Contoh Soal 2 :

Contoh Soal Anuitas

Sebuah pinjaman sebesar Rp850.000.000,00 yang harus dilunasi dengan 6 anuitas jika dasar bunga 4% per bulan dan pembayaran pertama dilakukan setelah sebulan. Sisa hutang pada akhir bulan kelima adalah?

Pembahasan

A = \frac{b(M_0)(1+b)^n}{(1+b)^n-1}

A = \frac{(0,04)(850.000.000)(1+0,04)^6}{(1+0,04)^6-1}

A = \frac{(0,04)(850.000.000)(1,04)^6}{(1,04)^6-1}

A = \frac{43.020.846,63}{0,2265319}

A = 162.147.628,43

Sisa hutang pada akhir periode ke-5 adalah

M_n = (1+b)^n(M - \frac{A}{b} + \frac{A}{b})

M_n = (1 + 0,04)^5(850.000.000 - \frac{162.147.628,43}{0,04}) + \frac{162.147.628,43}{0,04}

M_n = (1,04)^5(850.000.000 - \frac{162.147.628,43}{0,04}) + \frac{162.147.628,43}{0,04}

M_n = 155.911.109,00

Contoh Soal 3 :

Contoh Soal Bunga Majemuk

Modal sebesar Rp10.000.000,00 dipinjamkan dengan bunga majemuk 2% per tahun. Pada permulaan tahun ketiga, modal itu menjadi?

Pembahasan

M_n = M_0(1+b)^n

M_0 = 10.000.000(1 + 0,02)^2 (n = 2, karena awal tahun ke-3 sama dengan akhir tahun ke-2)

M_n = 10.000.000(1,02)^2

M_n = 10.404.000,00

Contoh Soal 4 :

Banyak penduduk kota A setiap tahun meningkat 2% secara eksponensial dari tahun sebelumnya. Tahun 2013 penduduk di kota A sebanyak 150.000 orang. Hitung banyak penduduk pada tahun 2014 dan 2023!

Jawab:

Capture.png

Banyak penduduk pada tahun 2014 (artinya 1 tahun setelah 2013, maka n = 1):

Capture-1.png

Banyak penduduk pada tahun 2023 (n=2023-2013=10):

pertumbuhan

Contoh Soal 5 : 

Suatu bahan radioaktif yang semula berukuran 125 gram mengalami reaksi kimia sehingga menyusut 12% dari ukuran sebelumnya setiap 12 jam secara eksponensial. Tentukan ukuran bahan radioaktif tersebut setelah 3 hari!

Jawab:

Capture-4.png

Peluruhan terjadi setiap 12 jam, sehari peluruhan terjadi 2 kali, 3 hari = 72 jam terjadi 6 kali peluruhan.

Capture-5.png

Capture-6.png

Contoh Soal 6 : 

Banyak penduduk suatu kota setiap tahun meningkat sekitar 1% dari banyak penduduk tahun sebelumnya. Berdasarkan sensus penduduk tahun 2009, penduduk di kota tersebut sebanyak 100.000 orang. Hitunglah banyak penduduk pada tahun 2010 dan 2020!

Diketahui : n = 2020 – 2009 = 11

                       M = 100.000

Ditanya : Mn 2010 dan Mn 2020?

Jawab :

  • Mn 2020 = M ( 1+i ) n

                             = 100.000 ( 1 + 1/100) 11

                             = 100.000 ( 1,115668347)

                             = 111.567 orang

  • Mn 2010 = 100.000 . 1/100

                             = 1.000 + 100.000

                             = 101.000 orang

Contoh Soal 7 : 

Kultur jaringan pada suatu uji laboratorium menunjukkan bahwa 1 bakteri dapat membelah menjadi 2 dalam waktu 2 jam. Diketahui bahwa, pada awal kultur jaringan tersebut terdapat 1.000 bakteri. Tentukan banyak bakteri setelah 20 jam!

Diketahui : n = 20/2 = 10

                             i= 2 jam / 2 bakteri = 1

Ditanya : Mn ?

Jawab : Mn = 1.000 ( 1 + 1) 10

                             = 1.000 ( 2) 10

                             = 1.024.000 bakteri

Contoh Soal 8 : 

Penduduk kota A baerjumlah 1 juta jiwa pada awal tahun 2000. Tingkat pertumbuhan penduduk per tahun adalah 4 %. Hitunglah jumlah penduduk kota tersebut pada awal tahun 2003!

Jawab:

 t = 2003-2000 = 3

P0 = 1 juta jiwa

r = 4% per tahun

Pt = P0 (1+r)

P16 = 1(1+0,04)³

 = (1,04)³

 = 1,124864

 = 1.124.864 juta jiwa

Jadi, jumlah penduduk kota tersebut pada tahun 2003 adalah sebanyak 1.124.864 juta jiwa.     

Contoh Soal 9 : 

Pada pukul 08.00 massa suatu zat radioaktif adalah 0,5 kg. Apabila laju peluruhan zar radioaktif tersebut 2% setiap jam, hitunglah sisa zat radioaktif pada pukul 10.00!

Jawab:

t = 2

P0 = 0,5

p = 2% setiap jam

Pt = P0 (1-p)

P2  = 0,5(1-0,02)²

= 0,5(0,98)²

= 0,9604

Jadi, sisa zat radioaktif setelah 2 jam adalah 0,9604 kg.

Contoh Soal 10 : 

Berapa nilai S dari P = Rp1.000.000 dengan tingkat bunga dihitung semesteran atau j2 = 18% p.a. selama 5 tahun?

Diketahui :

M = Rp1.000.000

b  = 18% / 2 = 9% = 0.09

n  = 5 x 2 = 10 periode

Mn= M (1+b)n

M = Rp1.000.000 (1+0,09)10

M = Rp1.000.000 (2,367363675)

M = Rp2.367.363,675

Contoh Soal 11 :   

Tuan Garda menyimpan uangnya sebesar Rp5.000.000 dalam sebuah bank yang memberikan bunga sebesar 18% pertahun dimana bunga dihitung bulanan. Berapa besarnya bunga yang dihasilkan selama tahun pertama?

M= Rp5.000.000

b = 18% / 12 = 1,5% = 0,015

n = 12 periode

Mn = M(1+b)n

Mn = Rp5.000.000 (1+0,015)12

Mn = 5.978.090,857

b  = S – P

b  = Rp5.978.090,857 – Rp5.000.000

b  = Rp 978.090,857

Contoh Soal 12 :

Ani mempunyai uang sebesar RP. 300.000,00. Uang tersebut beliau tabung di Bank dengan bunga tunggal 16 % per tahun. Berapakah besar bunga yang didapat Ani sehabis satu tahun? 

Jawab :

Modal (M)= RP. 300.000,00.
Persentase(P) = 16%
Lamanya = 1 tahun
Bunga = M x P x 1= 300.000 x 16 % x 1 = Rp. 48.000
Makara besar bunga yang didapat Ani sehabis satu tahun ialah Rp. 48.000,00

Contoh Soal 13 :

Tiga bulan kemudian Satya menyimpan uangnya di Bank sebesar Rp. 1000.000,00. Berapa jumlah uangnya ketika ini kalau Bank memperlihatkan bunga tunggal sebesar 8 %? Modal (M)= Rp. 1000.000,00. Persentase(P) = 8 % Lamanya (w) = 3 bulan Bunga = M x P x W= Rp. 1000.000,00 x 8% x 3/12 = Rp. 20.000 Uang satya kini = Rp. 1000.000,00 + Rp. 20.000,00 = Rp. 1020.000,00 Makara besar Uang satya kini ialah Rp. 1020.000,00

Jawab :






Contoh Soal 14 :

Rina mempunyai uang sebesar Rp.2.500.00,00 uang itu beliau tabung di Bank dengan bunga 11% pertahun. Setelah 2 tahun Rina mengambil uangnya, berapa uang yang diterima Rina?

Jawab :
Modal = Rp.2.500.00,00
Suku bunga = 11 %
Lamanya = 2 tahun


B = 2.500.00 x 11 % x 2 = 550.000

Jumlah uang = 2.500.000 + 550.000 = 3050.000
Jadi, jumlah uang yang diterima sehabis 2 tahun ialah Rp.3.050.000,00

Contoh Soal 15 :

Mira menyimpan uang di bank sebesar Rp.700.000,00. Setelah 5 bulan Mira mendapatkan bunga sebesar Rp. 43.750,00. Tentukan besar suku bunga di Bank tersebut!

Jawab :
Modal = Rp.700.000,00
Lama = 5 bulan
Bunga = Rp. 43.750,00






Maka besarnya suku bunga ialah 5%


Terima kasih kepada Ibu DR Lizza Novrida, semoga apa yang pelajari hari memberikan manfaat dikemudian hari dan diberkahi tuhan yang maha esa.

Wassalamualaikum Warahmatullahi Wabarakatuh


Shalom
Om Swastiastu
Namo Buddhaya
Rahayu
Salam Kebajikan
Salam Sejahtera Untuk Seluruh Alam  

Daftar Pustaka

Admin. (n.d.). Contoh Soal Dan Pembahasan Bunga Tunggal Tabungan Atau Pinjaman. Retrieved November 16, 2020, from matematikamudah10.blogspot.com: https://matematikamudah10.blogspot.com/2019/05/contoh-soal-dan-pembahasan-bunga_4.html

Alwin Mulyanto, S. (n.d.). Bunga Tunggal, Bunga Majemuk, Penyusutan, & Anuitas. Retrieved November 16, 2020, from www.studiobelajar.com: https://www.studiobelajar.com/bunga-tunggal-majemuk-anuitas/

Ardiyanti, D. (n.d.). MATEMATIKA KEUANGAN BUNGA TUNGGAL,BUNGA MAJEMUK DAN ANUITAS PERHITUNGAN BUNGA DALAM MATEMATIKA KEUANGAN. Retrieved November 16, 2020, from mydewiblog.wordpress.com: https://mydewiblog.wordpress.com/myob/

Heryansyah, T. R. (2017, Oktober 9). Pertumbuhan dan Peluruhan Matematika | Matematika Kelas 12. Retrieved November 16, 2020, from blog.ruangguru.com: https://blog.ruangguru.com/pertumbuhan-dan-peluruhan-matematika

Khansa, N. (2017, Oktober 18). PERTUMBUHAN&PELURUHAN MATEMATIKA. Retrieved November 16, 2020, from nabilahkhansa16.blogspot.com: http://nabilahkhansa16.blogspot.com/2017/10/pertumbuhan-peluruhan.html

Sundary, P. (2020, Agustus 9). Menyelesaikan Soal Cerita Tentang Pertumbuhan. Retrieved November 16, 2020, from www.dosenmatematika.co.id: https://www.dosenmatematika.co.id/menyelesaikan-soal-cerita-tentang-pertumbuhan/

 






 

Jakarta dan Hidup Layak

Paisal Vieri Eka Tama Simbolon Kesejahteraan Sosial 2B 11220541000056 Tugas PKN, 28 Juni 2023 Mantan Gubernur DKI Jakarta Basuki Tjahaja Pur...