Paisal Vieri Eka Tama Simbolon (28) XI IPS 2
Source : GNFI
LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA
Integral bisa diaplikasikan dalam kehidupan sehari-hari. Salah satu contoh yang umum dikenal adalah luas daerah. Luas daerah yang dimaksud adalah luas daerah di bawah kurva. Adapun langkah menghitungnya adalah sebagai berikut.
- Batas daerah yang akan diintegralkan harus jelas. Adapun batas daerah yang dimaksud adalah batas kiri dan kanannya serta batas atas dan bawahnya. Bentuk batas daerah bisa berupa fungsi atau konstanta, fungsi linier dan nonlinier (kuadrat, pangkat 3, akar pangkat). Bagaimana jika salah satu batas belum diketahui? Quipperian harus mencarinya terlebih dahulu, agar luasnya bisa dihitung.
- Quipperian harus mampu menggambar daerah di dalam kurva sesuai dengan batas-batas yang telah ditentukan (jika gambar masih dinyatakan dalam batas-batasnya saja). Oleh karena itu, diperlukan kemampuan untuk menggambar dengan baik.
- Quipperian juga harus bisa menempatkan rumus yang tepat untuk menghitung luas daerah berdasarkan ketentuan yang telah ada. Jangan lupa untuk memperhatikan gambar daerah dan rumus yang bersesuaian. Quipperian jangan khawatir ya, setiap daerah memiliki rumus fungsinya masing-masing, contohnya berikut ini.
a) Bentuk daerah jenis 1
b) Bentuk daerah jenis 2
c) Rumus cepat mencari luas
Rumus
cepat tidak berlaku untuk seluruh daerah ya, Quipperian. Rumus ini
berlaku pada daerah-daerah yang memiliki kondisi berikut.
- Memiliki dua batas fungsi, yaitu fungsi kuadrat dan fungsi kuadrat.
- Memiliki dua batas fungsi, yaitu fungsi kuadrat dan fungsi linear.
Jika memenuhi dua kondisi di atas, luasnya dapat dicari menggunakan persamaan berikut.
Lalu, apa yang dimaksud dengan a, b, dan c? Ketiga konstanta tersebut diperoleh dari proses berikut.
- Jika fungsinya y = f(x) dan y = g(x), maka buat fungsi selisihnya y = f(x) – g(x).
Jika fungsinya y = f(y) dan y = g(y), maka buat fungsi selisihnya y = f(y) – g(y)
- Fungsi selisih yang sudah Quipperian dapatkan, jangan disederhanakan lagi agar teridentifikasi nilai a, b, dan c.
- Jika Quipperian sudah mendapatkan nilai a, b¸ dan c, substitusikan ke persamaan luas berikut.
Tentukan luas daerah yang diarsir pada gambar di bawah ini!
Pembahasan:
Tentukan batas-batasnya terlebih dahulu.
- Batas kanan: x√y
- Batas kiri: sumbu y (x = 0)
- Batas atas: y = 9
- Batas bawah: y = 0
Jadi, luas daerah yang diarsir adalah 18 satuan luas
Penyelesaian :
Penyelesaian :
Terima kasih kepada Ibu DR Lizza Novrida, semoga apa yang pelajari
hari memberikan manfaat dikemudian hari
dan diberkati tuhan yang maha esa.
Wassalamualaikum Warahmatullahi Wabarakatuh
Shalom
Om Swastiastu
Namo Buddhaya
Rahayu
Salam Kebajikan
Salam Sejahtera Untuk Seluruh Alam
DAFTAR PUSTAKA
Admin. (2013, September 8). Cara Menghitung Luas Selimut Benda Putar. Retrieved from rumus-matematika.com: http://rumus-matematika.com/cara-menghitung-luas-selimut-benda-putar/
Admin. (2018, Juni). Integral Tentu: Contoh Soal dan Pambahasan. Retrieved from www.sheetmath.com: https://www.sheetmath.com/2018/06/integral-tentu-contoh-soal-dan-pembahasan.html
Tidak ada komentar:
Posting Komentar