Minggu, 09 Mei 2021

Soal PAT

Paisal Vieri Eka Tama Simbolon (28) XI IPS 2

Shalom
Om Swastiastu 
Namo Buddhaya 
Rahayu 
Salam Kebajikan 
Salam Sejahtera Untuk Seluruh Alam

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ
ﺇِﻥَّ ﺍﻟْﺤَﻤْﺪَ ﻟِﻠَّﻪِ ﻧَﺤْﻤَﺪُﻩُ ﻭَﻧَﺴْﺘَﻌِﻴْﻨُﻪُ ﻭَﻧَﺴْﺘَﻐْﻔِﺮُﻩْ ﻭَﻧَﻌُﻮﺫُ ﺑِﺎﻟﻠﻪِ ﻣِﻦْ ﺷُﺮُﻭْﺭِ ﺃَﻧْﻔُﺴِﻨَﺎ ﻭَﻣِﻦْ ﺳَﻴِّﺌَﺎﺕِ ﺃَﻋْﻤَﺎﻟِﻨَﺎ، ﻣَﻦْ ﻳَﻬْﺪِﻩِ ﺍﻟﻠﻪُ ﻓَﻼَ ﻣُﻀِﻞَّ ﻟَﻪُ ﻭَﻣَﻦْ ﻳُﻀْﻠِﻞْ ﻓَﻼَ ﻫَﺎﺩِﻱَ ﻟَﻪُ. ﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻻَ ﺇِﻟَﻪَ ﺇِﻻَّ ﺍﻟﻠﻪ ﻭَﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻣُﺤَﻤَّﺪًﺍ ﻋَﺒْﺪُﻩُ ﻭَﺭَﺳُﻮْﻟُﻪُ.

Saya akan memperkenalkan diri. Saya Paisal Vieri Eka Tama Simbolon (28) murid kelas XI IPS 2 di Sekolah Menengah Atas Negeri 63 Jakarta. 
 




Gorontalo

Source : GNFI

Soal PAT Matematika

1
2
3
4
5
6
7
8
9
10
11. 






 

 

12.








 

 

13. 











 

 

14. 







 

15. 




16. 

















17. 





 
 
18. 











 
 
 
19. 










 
 
 
 
 
20. 


















 
 
 
 
 
 
 
21. 

22. 














 
 
 
 
 
23. 
















 
 
 
 
 
24. 









 
 
 
 
 
25. 















 
 
 
 
 
 
26. 







 
 
 
 
 
27. 

















 
 
 
 
28. 

















 
 
 
 
29. 

















 
 
 
30. 

















 
 
 
31. 








 
 
 
32. 




















 
 
 
 
33. 















 
 
 
 
 
 
34. 

















35. 



















36. 


















37. 















38. 





















39. 




















40. 


















Terima kasih kepada Ibu DR Lizza Novrida, semoga apa yang pelajari hari memberikan manfaat dikemudian hari dan diberkati tuhan yang maha esa.
Wassalamualaikum Warahmatullahi Wabarakatuh
Shalom
Om Swastiastu
Namo Buddhaya
Rahayu
Salam Kebajikan
Salam Sejahtera Untuk Seluruh Alam

Soal Interval Fungsi Naik dan Turun

Paisal Vieri Eka Tama Simbolon (28) XI IPS 2

Shalom
Om Swastiastu 
Namo Buddhaya 
Rahayu 
Salam Kebajikan 
Salam Sejahtera Untuk Seluruh Alam

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ
ﺇِﻥَّ ﺍﻟْﺤَﻤْﺪَ ﻟِﻠَّﻪِ ﻧَﺤْﻤَﺪُﻩُ ﻭَﻧَﺴْﺘَﻌِﻴْﻨُﻪُ ﻭَﻧَﺴْﺘَﻐْﻔِﺮُﻩْ ﻭَﻧَﻌُﻮﺫُ ﺑِﺎﻟﻠﻪِ ﻣِﻦْ ﺷُﺮُﻭْﺭِ ﺃَﻧْﻔُﺴِﻨَﺎ ﻭَﻣِﻦْ ﺳَﻴِّﺌَﺎﺕِ ﺃَﻋْﻤَﺎﻟِﻨَﺎ، ﻣَﻦْ ﻳَﻬْﺪِﻩِ ﺍﻟﻠﻪُ ﻓَﻼَ ﻣُﻀِﻞَّ ﻟَﻪُ ﻭَﻣَﻦْ ﻳُﻀْﻠِﻞْ ﻓَﻼَ ﻫَﺎﺩِﻱَ ﻟَﻪُ. ﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻻَ ﺇِﻟَﻪَ ﺇِﻻَّ ﺍﻟﻠﻪ ﻭَﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻣُﺤَﻤَّﺪًﺍ ﻋَﺒْﺪُﻩُ ﻭَﺭَﺳُﻮْﻟُﻪُ.

Saya akan memperkenalkan diri. Saya Paisal Vieri Eka Tama Simbolon (28) murid kelas XI IPS 2 di Sekolah Menengah Atas Negeri 63 Jakarta. 


Manado

Source : GNFI

Soal sejenis dengan nomor 8

y = x+ 6x2 – 15x + 6 pada interval -2 ≤ x ≤ 3
Jawaban
y = x+ 6x2 – 15x + 6, maka y’ = 3x+ 12x – 15
Ingat, suatu grafik akan maksimum/minimum ketika y’ = 0.
Maka:
3x+ 12x – 15 = 0
     x+ 4x – 5 = 0
 (x + 5)(x – 1) = 0
     x = -5 atau x = 1

Perhatikan bahwa x = 1 terletak pada interval -2 ≤ x ≤ 3. Sedangkan x = -5 tidak masuk dalam interval.
Untuk menentukan nilai maksimum dan minimumnya, kita cukup mensubstitusikan (memasukkan) nilai x pada saat y’ = 0 (yang masuk dalam interval) dan nilai x pada batas-batas intervalnya.
Jadi, nilai x yang dimasukkan yaitu nilai x = -2, 1, dan 3.
Kita hitung satu persatu.
y = f(x) = x+ 6x2 – 15x + 6
f(-2) = (-2)+ 6(-2)2 – 15(-2) + 6 = -8 + 24 + 30 + 6 = 52
f(1) = (1)+ 6(1)2 – 15(1) + 6 = 1 + 6 – 15 + 6 = -2
f(3) = (3)+ 6(3)2 – 15(3) + 6 = 27 + 54 - 45 + 6 = 42
Jadi, kurva/grafik y = 2x- 8x + 1 pada interval 1 ≤ x ≤ 6 memiliki nilai maksimum 52 dan nilai minimum -2.


Soal sejenis dengan nomor 28

Fungsi f(x) = 2x3 – 9x2 + 12x akan naik pada interval ….
A. x < –2 atau x > –1
B. –2 < x < –1
C. –1 < x < 2
D. 1 < x < 2
E. x < 1 atau x > 2

Pembahasan:

Turunan fungsi f(x):
f’(x) = 3 · 2x3–1 – 2 · 9x2–1 + 1 · 12x1–1
f’(x) = 6x2 – 18x + 12

Syarat fungsi f(x) naik:
f’(x) > 0
6x2 – 18x + 12 > 0

Selanjutnya adalah mencari himpunan penyelesaian dari pertidaksamaan 6x2 – 18x + 12 > 0.

Mencari titik-titik batas x (harga nol):
6x2 – 18x + 12 = 0
x2 – 3x + 2 = 0
(x – 2)(x – 1) = 0
x1 = 2 atau x2 = 1

Garis bilangan dan daerah yang memenuhi pertidaksamaan 6x2 – 18x + 12 > 0:

Soal Menentukan Interval Fungsi Naik

Jadi, fungsi f(x) = 2x3 – 9x2 + 12x akan naik pada interval x < 1 atau x > 2.

Jawaban: E

Terima kasih kepada Ibu DR Lizza Novrida, semoga apa yang pelajari hari memberikan manfaat dikemudian hari dan diberkati tuhan yang maha esa.
Wassalamualaikum Warahmatullahi Wabarakatuh
Shalom
Om Swastiastu
Namo Buddhaya
Rahayu
Salam Kebajikan
Salam Sejahtera Untuk Seluruh Alam



Daftar Pustaka


Selasa, 27 April 2021

Rabu, 24 Maret 2021

LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA

Paisal Vieri Eka Tama Simbolon (28) XI IPS 2

Shalom
Om Swastiastu 
Namo Buddhaya 
Rahayu 
Salam Kebajikan 
Salam Sejahtera Untuk Seluruh Alam

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ
ﺇِﻥَّ ﺍﻟْﺤَﻤْﺪَ ﻟِﻠَّﻪِ ﻧَﺤْﻤَﺪُﻩُ ﻭَﻧَﺴْﺘَﻌِﻴْﻨُﻪُ ﻭَﻧَﺴْﺘَﻐْﻔِﺮُﻩْ ﻭَﻧَﻌُﻮﺫُ ﺑِﺎﻟﻠﻪِ ﻣِﻦْ ﺷُﺮُﻭْﺭِ ﺃَﻧْﻔُﺴِﻨَﺎ ﻭَﻣِﻦْ ﺳَﻴِّﺌَﺎﺕِ ﺃَﻋْﻤَﺎﻟِﻨَﺎ، ﻣَﻦْ ﻳَﻬْﺪِﻩِ ﺍﻟﻠﻪُ ﻓَﻼَ ﻣُﻀِﻞَّ ﻟَﻪُ ﻭَﻣَﻦْ ﻳُﻀْﻠِﻞْ ﻓَﻼَ ﻫَﺎﺩِﻱَ ﻟَﻪُ. ﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻻَ ﺇِﻟَﻪَ ﺇِﻻَّ ﺍﻟﻠﻪ ﻭَﺃَﺷْﻬَﺪُ ﺃَﻥَّ ﻣُﺤَﻤَّﺪًﺍ ﻋَﺒْﺪُﻩُ ﻭَﺭَﺳُﻮْﻟُﻪُ.

Saya akan memperkenalkan diri. Saya Paisal Vieri Eka Tama Simbolon (28) murid kelas XI IPS 2 di Sekolah Menengah Atas Negeri 63 Jakarta. 
 


 
Tegalwangi

Source : GNFI

LUAS DAN VOLUME DAERAH YANG BERKAITAN DENGAN INTEGRAL BERSAMA CONTOH SOALNYA

Integral bisa diaplikasikan dalam kehidupan sehari-hari. Salah satu contoh yang umum dikenal adalah luas daerah. Luas daerah yang dimaksud adalah luas daerah di bawah kurva. Adapun langkah menghitungnya adalah sebagai berikut.

  • Batas daerah yang akan diintegralkan harus jelas. Adapun batas daerah yang dimaksud adalah batas kiri dan kanannya serta batas atas dan bawahnya. Bentuk batas daerah bisa berupa fungsi atau konstanta, fungsi linier dan nonlinier (kuadrat, pangkat 3, akar pangkat). Bagaimana jika salah satu batas belum diketahui? Quipperian harus mencarinya terlebih dahulu, agar luasnya bisa dihitung.
  • Quipperian harus mampu menggambar daerah di dalam kurva sesuai dengan batas-batas yang telah ditentukan (jika gambar masih dinyatakan dalam batas-batasnya saja). Oleh karena itu, diperlukan kemampuan untuk menggambar dengan baik.
  • Quipperian juga harus bisa menempatkan rumus yang tepat untuk menghitung luas daerah berdasarkan ketentuan yang telah ada. Jangan lupa untuk memperhatikan gambar daerah dan rumus yang bersesuaian. Quipperian jangan khawatir ya, setiap daerah memiliki rumus fungsinya masing-masing, contohnya berikut ini.

a) Bentuk daerah jenis 1

b) Bentuk daerah jenis 2

c) Rumus cepat mencari luas
Rumus cepat tidak berlaku untuk seluruh daerah ya, Quipperian. Rumus ini berlaku pada daerah-daerah yang memiliki kondisi berikut.

  • Memiliki dua batas fungsi, yaitu fungsi kuadrat dan fungsi kuadrat.
  • Memiliki dua batas fungsi, yaitu fungsi kuadrat dan fungsi linear.

Jika memenuhi dua kondisi di atas, luasnya dapat dicari menggunakan persamaan berikut.
Lalu, apa yang dimaksud dengan a, b, dan c? Ketiga konstanta tersebut diperoleh dari proses berikut.

  • Jika fungsinya y = f(x) dan y = g(x), maka buat fungsi selisihnya y = f(x)g(x).

Jika fungsinya y = f(y) dan y = g(y), maka buat fungsi selisihnya y = f(y)g(y)

  • Fungsi selisih yang sudah Quipperian dapatkan, jangan disederhanakan lagi agar teridentifikasi nilai a, b, dan c.
  • Jika Quipperian sudah mendapatkan nilai a, dan c, substitusikan ke persamaan luas berikut. 

Contoh Soal :
Contoh Soal 1

Tentukan luas daerah yang diarsir pada gambar di bawah ini!

Pembahasan:
Tentukan batas-batasnya terlebih dahulu.

  • Batas kanan:  x√y
  • Batas kiri: sumbu y (x = 0)
  • Batas atas: y = 9
  • Batas bawah: y = 0
Luas daerah yang diarsir adalah
Jadi, luas daerah yang diarsir adalah 18 satuan luas
 
Contoh Soal 2
Tentukanlah luas permukaan benda putar yang dibatasi oleh Screenshot_4 jika diputar terhadap sumbu x!

Penyelesaian :

int5_01

Screenshot_5

 
 
Contoh Soal 3
 
Tentukanlah luas permukaan benda putar yang dibatasi oleh kurva y = x3, 0 ≤ y ≤ 1, jika diputar terhadap sumbu y!

Penyelesaian :

int5_02

Screenshot_6

Screenshot_7

Screenshot_8

 

Terima kasih kepada Ibu DR Lizza Novrida, semoga apa yang pelajari hari memberikan manfaat dikemudian hari dan diberkati tuhan yang maha esa.
Wassalamualaikum Warahmatullahi Wabarakatuh
Shalom
Om Swastiastu
Namo Buddhaya
Rahayu
Salam Kebajikan
Salam Sejahtera Untuk Seluruh Alam

DAFTAR PUSTAKA

Admin. (2013, September 8). Cara Menghitung Luas Selimut Benda Putar. Retrieved from rumus-matematika.com: http://rumus-matematika.com/cara-menghitung-luas-selimut-benda-putar/

Admin. (2018, Juni). Integral Tentu: Contoh Soal dan Pambahasan. Retrieved from www.sheetmath.com: https://www.sheetmath.com/2018/06/integral-tentu-contoh-soal-dan-pembahasan.html

 

 

Jakarta dan Hidup Layak

Paisal Vieri Eka Tama Simbolon Kesejahteraan Sosial 2B 11220541000056 Tugas PKN, 28 Juni 2023 Mantan Gubernur DKI Jakarta Basuki Tjahaja Pur...